58 research outputs found

    Review of rainwater harvesting research by a bibliometric analysis

    Get PDF
    This study presents a review of recent rainwater harvesting (RWH) research by a bibliometric analysis (based on performance analysis and science mapping method). Following the inclusion/exclusion criteria, a total of 3226 publications were selected for this bibliometric analysis. From the selected publications, the top journals were identified according to number of publications and number of citations, as well as the authors with the highest number of publications. It has been found that publication rate on RWH has been increasing steadily since 2005. Water (MDPI) journal has published the highest number of publications (128). Based on the literature considered in this review, the top five authors are found as Ghisi, E., Han, M., Rahman, A., Butler, D. and Imteaz, M.A. in that order. With respect to research collaborations, the top performing countries are USA–China, USA–Australia, USA–UK, Australia–UK and Australia–China. Although, the most dominant keywords are found to be ‘rain’, ‘rainwater’, ‘water supply’ and ‘rainwater harvesting’, since 2016, a higher emphasis has been attributed to ‘floods’, ‘efficiency’, ‘climate change’, ‘performance assessment’ and ‘housing’. It is expected that RWH research will continue to rise in future following the current trends as it is regarded as a sustainable means of water cycle management

    Vegetated roofs as a means of sustainable urban development : a scoping review

    Get PDF
    Urbanisation affects the water cycle and heat balance in a negative way. Vegetated roofs have the potential to minimise the effects of urbanisation. A scoping review is presented here to examine how vegetated roofs are being evolved as an effective tool of sustainable urban stormwater management and overall urban development. It has been found that research on vegetated roofs has been increasing significantly and it can contribute towards achieving multiple sustainable de-velopment goals (SDGs). It has also been found that the uptake of vegetated roofs has been slow. A lack of regulatory acceptance caused by an absence of experimental data and a subsequent knowledge gap establishing the effectiveness of vegetated roofs are major reasons behind this slow uptake. Future research on vegetated roofs and their subsequent evolutions should put a focus on gathering experimental data towards establishing a performance benchmark for detention, retention and water quality in urban settings. Such data can be utilised towards developing a stand-alone guideline and software for green roof design

    Community-scale rural drinking water supply systems based on harvested rainwater : a case study of Australia and Vietnam

    Get PDF
    Rainwater harvesting (RWH) systems can be used to produce drinking water in rural communities, particularly in developing countries that lack a clean drinking water supply. Most previous research has focused on the application of RWH systems for individual urban households. This paper develops a yield-after-spillage water balance model (WBM) which can calculate the reliability, annual drinking water production (ADWP) and benefit-cost ratio (BCR) of a community-scale RWH system for rural drinking water supply. We consider multiple scenarios regarding community aspects, including 150-1000 users, 70-4800 kL rainwater storage, 20-50 L/capita/day (LCD) drinking water usage levels, local rainfall regimes and economic parameters of Australia (developed country) and Vietnam (developing country). The WBM analysis shows a strong correlation between water demand and water supply with 90% system reliability, which allows both Australian and Vietnamese systems to achieve the similar capability of ADWP and economic values of the produced drinking water. However, the cost of the Vietnamese system is higher due to the requirement of larger rainwater storage due to larger household size and lower rainfall in the dry season, which reduces the BCR compared to the Australian systems. It is found that the RWH systems can be feasibly implemented at the water price of 0.01 AUD/L for all the Vietnamese scenarios and for some Australian scenarios with drinking water demand over 6 kL/day

    Regional flood frequency analysis using an artificial neural network model

    Get PDF
    This paper presents the results from a study on the application of an artificial neural network (ANN) model for regional flood frequency analysis (RFFA). The study was conducted using stream flow data from 88 gauging stations across New South Wales (NSW) in Australia. Five different models consisting of three to eight predictor variables (i.e., annual rainfall, drainage area, fraction forested area, potential evapotranspiration, rainfall intensity, river slope, shape factor and stream density) were tested. The results show that an ANN model with a higher number of predictor variables does not always improve the performance of RFFA models. For example, the model with three predictor variables performs considerably better than the models using a higher number of predictor variables, except for the one which contains all the eight predictor variables. The model with three predictor variables exhibits smaller median relative error values for 2- and 20-year return periods compared to the model containing eight predictor variables. However, for 5-, 10-, 50- and 100-year return periods, the model with eight predictor variables shows smaller median relative error values. The proposed ANN modelling framework can be adapted to other regions in Australia and abroad

    Production of fresh water by a solar still : an experimental case study in Australia

    Get PDF
    There is a scarcity of fresh water in many rural communities where solar stills can be used to produce drinking water at a minimal cost. These stills use solar energy, which is a sustainable form of energy, and hence this can contribute towards achievement of United Nations (UN) Sustainable Development Goals (SDG). This study aims to develop empirical models of a solar stills based on experimental data obtained at Werrington South, New South Wales, Australia. Two solar stills were used in the experiment, a conventional design (Con-Still) and a con-still modified with adding extra thermal mass inside the still (mod-still). Regression analysis was adopted to develop prediction equations using Pi (productivity in L/m2/day) as the response variable and ambient temperature (Ta), sky temperature (Ts19), global radiation (Gh), and wind velocity (W) as the predictor variables. The mean and median productivity values of the mod-still were found to be 17%, and 22% higher than that those for the con-still. The proposed mod-still can be further improved and used in rural areas to produce fresh water from sea water and other forms of contaminated water

    A review on chlorination of harvested rainwater

    Get PDF
    The supply of safe drinking water to rural communities has always been challenging, unlike in most large cities where government authorities have constructed central water supply systems. In many rural areas, primary water sources such as surface water and groundwater are at risk of contamination with rapid agricultural and industrial growth and climate change-related issues. Rainwater harvesting is an ancient practice for rural communities, and the momentum around its use is continually growing in recent years. However, the lack of sustainable treatment facilities on a small scale encourages dwellers to consume harvested rainwater (HRW) without any treatment even though drinking untreated HRW may have multiple health impacts in many cases. There are several methods of treating HRW. While chlorination is extensively used to disinfect water in large volumes, e.g., central drinking water supply systems), it has not been widely adopted for treating water on a small scale. We present a scoping review to explore whether chlorination could be a viable option for disinfecting HRW at a domestic level. It is found that inadequate treatment prior to chlorine disinfection could produce chlorine disinfection byproducts (DBPs). Limited data on DBP concentrations in HRW are available to assess its health implications. Based on this review, it is argued that chlorination could be an option for treating HRW at a domestic level when limitations associated with this method (such as safe storage, appropriate sustainable technology, and lessening DBPs by lowering total organic carbon before chlorination through other treatment methods) are resolved

    Comparison between quantile regression technique and generalised additive model for regional flood frequency analysis : a case study for Victoria, Australia

    Get PDF
    For design flood estimation in ungauged catchments, Regional Flood Frequency Analysis (RFFA) is commonly used. Most of the RFFA methods are primarily based on linear modelling approaches, which do not account for the inherent nonlinearity of rainfall-runoff processes. Using data from 114 catchments in Victoria, Australia, this study employs the Generalised Additive Model (GAM) in RFFA and compares the results with linear method known as Quantile Regression Technique (QRT). The GAM model performance is found to be better for smaller return periods (i.e., 2, 5 and 10 years) with a median relative error ranging 16–41%. For higher return periods (i.e., 20, 50 and 100 years), log-log linear regression model (QRT) outperforms the GAM model with a median relative error ranging 31–59%

    A review and analysis of water research, development, and management in Bangladesh

    Get PDF
    This paper presents a review of water research, development, and management in Bangladesh, with examples drawn from the past and present. A bibliometric analysis is adopted here to analyze the water-related publication data of Bangladesh. Water-quality-related research is the dominating research field in Bangladesh as compared to water-quantity (floods and droughts)-related ones. The most productive author was found to be Ahmed KM for water-related publication in Bangladesh. The arsenic contamination in Bangladesh has received the highest attention (13 out of the top 15 highly cited papers are related to arsenic contamination). Climate-change-related topics have been showing an increasing trend in research publications over the last 5 years. Bangladesh Delta Plan 2100, prepared recently, is a visionary master plan that is expected to shape water management in Bangladesh in the coming decades to adapt to climate change. A set of recommendations is made here to achieve sustainable water management in Bangladesh

    Nano-refrigerants and nano-lubricants in refrigeration : synthesis, mechanisms, applications, and challenges

    Get PDF
    Addressing global energy security and environmental concerns, the utilization of nano-refrigerants and nano-lubricants has emerged as an innovative path for enhancing heat transfer. This research focuses on enhancing the thermophysical properties, heat transfer efficiency, and tribological characteristics of nanofluids—nanoparticles dispersed in refrigerants or lubricants. These nanofluids have demonstrated significant potential in applications such as cooling, air conditioning systems, and heat transfer equipment including pumps and pipes. A comprehensive understanding of parameters like thermal conductivity, viscosity, pressure drop, pumping power, and energy performance is delivered, with the aim of enhancing the overall efficiency of refrigeration systems, particularly the coefficient of performance (COP). Additionally, the review covers existing research on flow and pool boiling heat transfer, nano-lubricant tribological enhancement, and nano-refrigerant condensation. The study also addresses the challenges associated with the use of nano-refrigerants and nano-lubricants and offers a prospective outlook for their usage. These novel nanofluids are anticipated to emerge as effective solutions for increasing the COP and reducing energy consumption in the industrial sector, thus extending beyond the scope of previous efforts in this field. This review could serve as a valuable resource for a broad audience interested in this novel approach to energy efficiency

    Basic concepts of solar-to-chemical energy conversion by oxide semiconductors

    No full text
    The purpose of this work is to consider the basic concepts on the present state of understanding of photocatalytic energy conversion using oxide semiconductors. This work also considers the approaches in derivation of theoretical models that allow explanation of the effect of properties on the performance of oxide-based photocatalysts in photocatalytic water oxidation. In this work we show that the performance of photocatalytic systems must be considered in terms of a range of the key performance-related properties (KPPs) that, in addition to the band gap, include the concentration of surface active sites, charge transport and Fermi level. Taking into account that all these KPPs are related to defect disorder, defect engineering may be applied in processing oxide semiconductors with optimal properties that are required to exhibit maximised performance in solar-to-chemical energy conversion
    • …
    corecore